Exercise 41

For the following exercises, solve the equations over the complex numbers.

$$
5 x^{2}+6 x+2=0
$$

Solution

Factor the coefficient of x^{2}.

$$
5\left(x^{2}+\frac{6}{5} x+\frac{2}{5}\right)=0
$$

The two terms with x, x^{2} and (6/5)x, cannot be combined, so it's necessary to complete the square to solve for x. Recall the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=\frac{6}{5}$, which means $B=\frac{3}{5}$ and $B^{2}=\frac{9}{25}$. Add and subtract $\frac{9}{25}$ within the parentheses on the left side and apply the identity.

$$
\begin{gathered}
5\left[\left(x^{2}+\frac{6}{5} x+\frac{9}{25}\right)+\frac{2}{5}-\frac{9}{25}\right]=0 \\
5\left[\left(x+\left(\frac{3}{5}\right)\right)^{2}+\frac{1}{25}\right]=0 \\
5\left(x+\frac{3}{5}\right)^{2}+\frac{1}{5}=0
\end{gathered}
$$

Now that x appears in only one place, it can be solved for. Subtract $1 / 5$ from both sides.

$$
5\left(x+\frac{3}{5}\right)^{2}=-\frac{1}{5}
$$

Divide both sides by 5 .

$$
\left(x+\frac{3}{5}\right)^{2}=-\frac{1}{25}
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{\left(x+\frac{3}{5}\right)^{2}} & =\sqrt{-\frac{1}{25}} \\
& =\sqrt{\frac{1}{25}(-1)} \\
& =\sqrt{\frac{1}{25}} \sqrt{-1} \\
& =\frac{1}{5} i
\end{aligned}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x+\frac{3}{5}$.

$$
\left|x+\frac{3}{5}\right|=\frac{1}{5} i
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x+\frac{3}{5}= \pm \frac{1}{5} i
$$

Subtract $\frac{3}{5}$ from both sides.

$$
x=-\frac{3}{5} \pm \frac{1}{5} i
$$

Therefore,

$$
x=\left\{-\frac{3}{5}-\frac{1}{5} i,-\frac{3}{5}+\frac{1}{5} i\right\} .
$$

